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U AR N L gy

I. INTRODUCTION

Studies in separating boundary layers leading to accurate umethods for
predicting flow separation, predicting flows on the verge of separation,
predicting separating and reattaching flows and predicting fully-separated
flows find a large number of applications in aerodynamic problems and naturally
in the design of both ccmmercial and military airplanes., For cxsaple, an
accurate determination of the separation point is very crucial in many problems
since separation strongly influences the performance of acrodinamic configu-
rations, A common procedure employed to determine this point is to <nlve the
governing boundary-layer equations for a given external velocity distribution
and find the point (if any) where the wall shear qoes to zero. According to
recent studies (for example, ref. 1}, such a prediction can be done accurately
for two-dimensional and axisymmetric laminar and turbulent flows. Such a
capability should also exist shorciy for three-dimensional flows in view of the
considerable work being done in this area (see for example, refs. 2, 3, 4).

Predicting flows on the verge of separation (that is, flows with zereo wall
shear) is quite important in many problems., In the case of airfoils where it
is desired to maximize the lift, it is necessary to compute the minimum distance
over which a given pressure rise can be obtained without the flow separating.
The most rapid pressure rise that it is possible to obtain occurs when the wall
shear stress 3long the suction side of the airfoil decreases to zero. There-
fore, it is of considerable interest to be able to calculate bnundary layers
with specified values for the wall shear that also decrease to zero. The
Liebeck airfoils discussed in refs, 5 and 6 are designed on that principle.

Prediction of partially separating fiows is cre of the most difficult,
yet rewarding tasks in acrodynamics, An economic and efficient operation of
aerodynamic devices depends on smooth, streamlined flow. The upper limit of
this efficient operating range is marked by the flow breakaway, called sepa-
ration, or stall., The ideal attached-flow conditions are seldom attained in
practice since a design is a series of cempromises between conflicting require-

ments. As a specific example, consider an airplane wing whose maxifum 1ift is

determined by separation. If thi. wing was designed from the performance




standpoint alone, simultaneous sparwise stall would be desirable. However,
because nobody wants to stall without lateral control (by ailerons), wings are
designed te have progressive stall from the wing root out. Operating with
partially separated wings, especially for swept wings, creates in turn,
longitudinal control problems because of shifts in the center of pressure.

From the standpoint of design of control surfaces it is necessary to have
methods for calculating overall forces on wings with partial separation. Today
such a capability for calculating partially separating flows, even in two
dimensions, does not exist. '

Prediction of separating and reattaching flows is also very important.
Two typical examples of such flows are a leading edge bubble and shock boundary-
iayer interaction. In both cases the boundary layer separates from the surface
but reattaches after a short distance. Here it is important to know under
what conditions the boundary layer reattaches or separates completely. The
reattachment after a leading edge bubble on highly swept wings is relevant to
the leading-edge vortex formation, and the absence of reattachment after a
shock signifies shock-induced stall. Today a satisfactory prediction of
separating and reattaching flows, even for two dimensions, again does not
exist.

In recent years a number of studies on inverse boundary-laver flows have
been conducted. FExcept for the integral-method approaches, most of these studies
have been directed to laminar layers. }n ref. 7, Catherall and Mangler solved
the laminar boundary-layer equations in the usual way until the separation point
was approached. By assuming that the displacement thickness behaves in a reqular
prescribed fashion in the region of the separation point, they calculated the
pressure distribution in that region for the prescribed displacement thickness
distribution. Their numerical solutions did not show any signs of a singular
behavior at separation.

In ref. 8, Keller and Cebeci solved the laminar boundary-layer equations
for a prescribed positive wall shear and in ref. 9, Klineberg and Steger solved
them for a prescribed negative wall shear. In ref. 10, Carter presented numer-
ical solutions of the laminar boundarv-layer equations involving separation and
reattachment. He obtained solutions with an inverse procedure in which he




prescribed the displacement thickness or the wall shear. HMe compared his

results with Klineberg and Steger's separated boundary-iayer ca]cu]ations(g)

and with Briley's so]ution(]]) of the Navier-Stokes equations for a separated

region. —

In ref, 12, Cebaci, Berkant, Silivri and Keller solved the turbulent
boundary-layer equacions for a prescribed positive wall shear. The only other
turbulent boundary- layer calculations for flows with prescribed wall shear were
made by Kuhn and Nie]sen(]3), by using an integral technique. However, unlike

ref. 12, their solutions include negative wall shear as well as positive wall
shear.

The work described in this report is one phase of studies on separating

flows conducted under the contract NJ0014-74-A-0203-0001, NR215-234, from the
Ofiice of Navul Research. It deals with the calculation of laminar and
turbulent boundary-layer flows for standard and inverse boundary-value problems,

| and is applicable to both incompressible and compressible flows. The standard
boundary-layer problem considers the solution of the usual boundary-layer
equations for a given external velocity distribution. The inverse problem
considers the solution of the governing equations for assigned wall shear or
for assigned displacement thickness. It provides a very useful and powerful
method for caiculating flows on the verge of separating.

| The method, which is developed for two-dimensional flows, can easily be
extended to axisymmetric flows. It also has the potential to be used in a

number of problems that require inverse boundary-layer procedures. Some of
them are:

1. Laminar flow control studies. Here-the problem is to find the minimum
suction rate to keep the flow laminar.

2. Design of ducts for a given pressure distribution.
Design of optimum ducts.

4. Calculation of attached duct-flows (inviscid and viscous) such as
those in diffusers.
Design of two-dimensional and axisymmetric shapes.

6. Possible application to separated external flows.
Possible application to separated flows in ducts, i.,e., diffusers.



IT. GOVERNING EQUATIONS

2.1 Boundary-Layer Equations

The governing boundary-layer equations for steady, two-dimensional,
compressible, laminar and turbulent boundary layers are the continuity,
momentum and energy equations. They are given by:

Continuity
S (pu) + 2 (30) - 0 (2.1.1)
3X Ay ol
Momentum
U, =-du_ _dp a_[su~ ~r~r]
puST+ o v ax F 5y LY 3y pu'v (2.1.2)
Energy
Mo (1 - L) 2]
pU = + ov 3y - a3y [Pr 3y ov'H' + u( 57 ) U 5y (2.1.3)

Here -pu'v’ and -pv'H" denote the Reynolds stresses and

-p_v= pv + p'VI

The boundary conditions for (2.1.1) to (2.1.3) for zero mass transfer are:

y=20 u,v = 0 H=H, or (aH/ay)w = given
(2.1.4a)
y > o u > ue(x) H » He (2.1.4b)

2.2 Closure Assumptions for the Reynolds Stresses

The solution of the system given by (2.1.1) to (2.1.4) requiresclosure
assumptions for the Reynolds stresses, =-pu'v' and -pv'H'. In our study

we use eddy viscosity (ey) and eddv conductivity (eH) concepts and define

-~ oH
=pU'V' = pe %—;— s ~oV'H' = pey 3y (2.2.1)



and relate £m and ¢, to a turbufent Prandtl number Prt by

H
e 5 g -
th im/(H (Z.L.Z)

7
According to the eddy-viscosity formulation of Cebeci and Smith\]d), th»
turbtlent boundary layer is divided into two regions, called inner and outer
regions, and the eddy viscosity is defined by separate formulas in each

region. They are:

2 faul )
(‘—'m)’i =L 3y . (Em)i < (Lm)o (2.2.3a)
Cm = .
. o] L .
(Lm)0 “ (ue u)dy‘ , (°m)1 S (r,m)0 (2.2.3b)
i 0 !
Here
L = vy [1 ~exp(-y/A)]
+ oo (Th‘)-]/2 ;- \]/2
A=p Zx <2
N e P
v W (2.2.8)
N = [i “‘11-8(uw/ue)(oe/cw)2 D+]]/2
v u_ du 1 .1/2
+_'ee e - [
P = 3 dx °? Y, (ﬁ )
u w

T

In (2.2.%b) and {2.2.4) x, v and At are "universal" constants equal to
0.0168, 0.40, and 26, respectively, for hign Reynolds number flows, R_ = 5600,

To compute flows at Tow [eynolds numbers, one can modify these three coefficients
as discussed in ref, 3, p. 221.

The eddy-viscosity formulas (2.2.3) can also be modified to compute
transitional boundary layers as well as boundary layers in which the stream-

wise wall curvature becomes important. Again for a detailed discussion sce
ref. 3, p. 232.
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2.3 Transformation of the Governing Equations

Before we solve the system given by (2.1.1) through (2.1.4) with the
Reynolds stresses replaced by (2.2.1), we introduce the Falkner-Skan transforma-

tion L& remove the singularity at x = U anu o stretch the coordinate
in the y direction; we define:

172

u N
dn = (p Uex) ody (2.3.1)
e e

>
1
x

This transformation rot only allo's the calculations to br started very easily
at the leading edge or at the stagnation point but also removes the large vari-
ation in boundary-layer thickness along ih2 surface. In transfirmed variables,
the velocity profiles and temperature profiles do not change "much" as the
calculations proceed in the x-direction. <his results in small computation
times, and allows larger spacings to be taken in the x-direction.

We nex* define the stream function by

<
AS
{
o
=

pU = ’

<i
ha)
=<
]
{

¥ vy (2.3.2)

and a dimensionless stream function f(x,n) by

v = ("e“e“e")]/zf(x’“) (2.3.3)

With the relations (2,3.1) through (2.3.3), we can write the momentum and energy
equa.ions as

Homentum
(") + P FF 4 Pole - (592 = x (¢ g ::-) (2.3.4)
Energy
(eg' + df' ") + P fg’ = x (f' i’-;l - g g{) (2.3.5)

Here primes denote differentiation with respect to n and

&)
fi:'y‘" gz};}——’ c::‘-g: C:’-& (2.3.68]

e e “e'e
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2
b=(1+ ¢, e=g~r(1+g;§:—), d=;§(l %?)(23@)
1 x d X due
Pz [Pt i i Geve)] Po = u dx (2.3.6¢)
ee e
Similarly the boundary conditions in (2.1.4) become
Momentum
n=20 f=20 f' =0 (2.3.7a)
n=w f' =1 (2.3.7b)
Energy
n=20 9=g9, or g& = given {2.3.8a)
n =n g=1 (2.3.8h)

In terms of

[e~]

transformed variables, the inner and outer eddy viscosity formulas

n (2.2.3) can be written in dimensionless form as

where Yo
“m

2 \
+ _ 2. (Ye 1/2 1 w2 2
()5 = e () ) L 1F T 01 = exn(ey/m)] (2.3.9)
tn'o av ) X p . 3.
10 l
em/v and
. bW/ 2,0 v 0.\1/2
L= cl/2 (Tw) (Ce')(};ﬁ) 1R A k)l 2mt
e
N = [1 — 1.8 Eﬂ(i‘i)z *}]/2 v le —2 P, (2.3.10)
Ue pw p s P Fx . 2
T
by, f\; 1/2 : " Pa g . u_X
u - u — = —— n =
T elu, o172 ’ 1 fp i X v
e Rx 0 e

3
E

il ‘\ Tl k.
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ITI. STANDARD AND INVERSE PROBLEMS

The system given by (2.3.4), (2.3.5), (2.3.7) and (2.3.8) with specified
ue(x) or Pz(x) is the typical two-dimensional boundary-layer problem for
laminar and turbulent flows. For convenience we shall ¢all it the standard
problem.

There are a number of problems that require inverse procedures in viscous
flows. One type of inverse prnblem results from requiring that the local skin-
friction coefficient Ce defined by

Tw

S (3.1.1)
f . 2
(]/Z)OGUe

be specified. In terms of transformed variables (3.1.1) becomes

2f"C
. WW

Ce (3.1.2)

R
"B

Another type of inverse problem results from requiring that the displace-
ment thickness defined by

5 =f(1 —-%uT-)dy (3.1.3)

be specified. In terms of transformed variables (3.1.3) becomes

rln 0
6* = —._._x -—e_f')dn (3.]-4)
VR 0 P
X

Other inverse prablems can be formulated for the problems discussed at the en
of Section I. The system given by (2.3.4), (2.3.5), (2.3.7), (2.3.8) and (3.1.
or (3.1.4) is overdetermined and we cannot specify P2(x) (i.e., ue(x))
arbitrarily. Rather we must determine P2(x) as well as f(x,n) to solve

the system, In our study we use Newton's method and determine the unknowns by

the procedure discussed in the next section.

d
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3.1 Newton's Method for the Inverse Problem

To describe our numerical approach to the problem of the specified
C¢ case, Tet us assume that at x = X,.1 We are given the profiles of

f, f', f', g, g', the pressure gradient Pz(xn_]) and the velocity ue(x ).

At x = X, We seek an accurate approximation to the solution of (2.3.4), !
(2.3.5) subject to (2.3.7), (2.3.8) for a given cf(x). To start the calcula-
tions, it is necessary to know Pz(x) and ue(x). The latter is necessary
since Rx is a function of u_. In our method we assume P2(x) and calculate

e
ue(x) from the definition of Pz(x) in (2.3.6c). Using central differences

. . n _
we approximate P2 and solve it for ug = ue(xn) to get
N R
u_ = -u (3.1.5)
e e Pn-l?? _
2 Q
where
X
- n-1/2 n-1/2 _ 1 (pn , pn=1 =1
“h T X =X 1 ’ p2 2 (p2 + P2 bs xn-l/2 2 (xn * Xn-])
n.oon- (2.1.6)

Once Pz(x) and ue(x) are known, then the standard preblem (2.3.4), (2.3.5)
subject to (2.3.7), (2.3.8) can be solved. The numerical method used to do this
will be described in Section IV. Let us denote the solution of the standard
problem by

flxyn) = 8lx,n,P,(x)] (3.1.7)
Using this solution, we can now calculate c. (wiiich we shall denote by cf.)

from (3.1.2). Recallinrg that the desired value for the skin-friction coefficient
is cf(x), we form:

¢[P2(x)] Tee —cCg (3.1.8)
c
and seek Pz(x) such that Q[PZ(X)]= 3 on x>0,

To solve ¢[P2(x)] = 0, we use Newton's method. With some estimate

Pgo)(x) of the desi-ed pressure gradient, we define the sequence Piv)(x) by
setting



P (x) = PYx) - o) (3.1.9)
(3/3P, ){¢[P( T o

The derivative of ¢ with respect to P, can be obtained from (2.1.8) by

making use of the relation given by (3.1.2) and {2.%.7).

This gives
n-1 [ ']}
2C u"
I W € )
9s . W pn + £ (3.1.10)
ap e w n
2 R Yo |15 I/Z_ZQn)ZJ)
where
af;

To summarize one <*ep of iteration of Newton's method, we first estimate a
value for P2(xn), then calculate u: from (3.1.5), and obtain a solution of
(2.3.4), (2.3.5) subject to (2.3.7) and (2.3.8). The solution yields a ch“
according to (3.1.2). From this result and from the desired value cf(xn), we
find ¢ from (3.1.8). It is then clear that the next value of P (xn)

can be calculated from (3.1.9), prcvided that 9¢/3P, is known. In Section 4.3

we shall discuss its calculation, The iteration process is repeated until

|P£“+])<xn) - PQV)(xn)l <M (3.1.12)

where Vi is a small error tolerance.

Our procedure for the specified &*

case, is similar to the procedure for
the specified Ce case.

The difference in the procedure starts after we get
the solution (5.1.7). uUenuting the calculated velue of ¢&* by

63, and the desired value by 6*, we form

o[Py(x)] = ef — é* (3.1.13)

We obtain Pg+](x) from the expression given by (3.1.9). To find the deriva-

tive of ¢ with respect to P, from (3.1.13), we first write (3.1.4) as

o = XA_ (3.1.14)
"

10

o ;‘N R

X R R o o =
N s g el = = = =
e = s e R e e = .

i

el i ™
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where

Asf(c—u)dn (3.1.15)
0]

Differentiating (3.1,14) with respect to P2 and using (3.1.13), we get

au ~
3?2 /ﬁ: 3P2 7’un 3P2 ] -
x b e
From (3.1.5) and (2.1,15) it follows that
au 45
e n-1 n .
=-~-u L 3.1.17)
., P e (O g )
; n
3A
», -F(n_) (3.1.18)
where
F s of
= B'Fz‘

n




IV. SOLUTION OF THE GOVERNING EQUATIGNS FOR THE STANDARD PROBLEM

4.1 Numerical Formulation

We use a very efficient and accurate numerical method to solve the
governing equations. This is a two-point finite difference method developed
by H. B. Kelle#]s) and applied to the boundary-layer equations by Keller and
Cebeci (see, for example, references 16, 17).

According to this method we introduce new independent variables wu(x,n).
v(x,n), t(x,n) so that (2.3.4) and (2.3.5) can be written as a first-order
system

f' =y (4.1.1a)

u' = v (4.1.1b)

g' =1t (4.1.1¢)

(bv)' + P, fv + P, (¢ - '2) = xfu.y 31) 4.1.1d

1 2 ( X X (4.1.1d)

' _ ) of

(et + duv)' + P] ft = x (u 53- -t 3;) (4.1.7e)
On the net rectangle shown in Figure 1, we denote the net points by :
XO:O' xn=xn-] +kn, o= ], 2, . . -,N. ;
o, 5 o (401.2) :
No = 0, nj =0 + hj’ Jj=1,2, .. ., Jd:n, =, 5

Here the net spacings kn and hj are completely arbitrary. The quantities

(f, u, v, g, t) at points (xq, nj) of the net are approximated by net func-
tions denoted by (fg, ug, vg, gg. tg). We also empluy the notation for points

and quantities midway between net points and for any net function qg:

u ok

oL

1 1
xn_% = 2 (xn + xn_‘l): nj_lé = E (HJ + nj_])
(4.1.3)
n- _ 1 n n-l n _1,n n
Q; "=z lay+ay ), 5., =7 (a5 + a5.4)




xn-.l Xn- Y xn

Fig. 1. Net rectangle for difference approximations

The difference equations that are to approximate (4.1.1) are formulated by con-
sidering one mesh rectangle as in Fig. 1. We approximate (4.1.1a,b,c) using

centered difference quotients and average about the midpsint (xn,n. ,) of the

J=%:
segment P]P2 as follows:

-1 ;N n _ N

" (fj i} fj-l) B N (4.1.4a)
hl (o} - ) = Y (4.1.4
i T Y -1.4b)
-1, n n o\ _,n

hJ- (93 - 951/ F tj_l,é (4.1.4¢)

Similarly (4.1.1d,e) are approximated by centering about the midpoint

(xn_%.nj_%) of the rectangle P,P.P.P,

-1 nn n n n n n 2.\n
hy' (b3vG - BT Vi q) + (Py + an) (P35, - (Py + o ) (u%)]

=Py, (v.1.44)
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A R T P

Ty g

-1 ;. n,n n .n n N no, q-l n
hj (eJ.tJ - ej_]tj_]) + (P] + “n)(ft)j-g o [(ug)j_% V195
n-1n n-1,0 n-1.n n-1
- q% k _— . = T, 4.1.4
951133 i fJ-atJ-a J-%fJ—%] J-% ( )
where
n-i _ n-1 2\n-1]- hml =1 01 L pntln-l n-1 n-1
RN Ll R O (N5 (B3 Yy - byavga) TR g
1[on-1 21| |
n- - h 4.1.5a
+ P2 { J-k (u )J %]‘ (
n-1 _ n-1 n-]i . Jqn=ts |- n-1.n-1  n-1 _n-]
TJ_x = ap [(ft)j_% - (ug)j_%J 2 [(duv) ]j-% [hj (ej tj ej;] tj-])
n-l n-1 4.1.5b
- (fwj_%] (4.1.5b)
Equations (4.1.4) are imposed for j = 1,2,...,J. The boundary
conditions {(2.3.7) and (2.3.8) yield, at x = Xp s
n _ no_ no_ n_n n_.n n o
fo =0, u,=0, uy = L P g, Or ty =t 9y - 1. (4.1.6)

4,2 Solution of the Difference Equations

If we assume (fg-], ug'], v?'], gg'], t?'l) to be known for 0 < j <J,
J

then (4,1.4) for 1 < j < J and the boundary concitions (4.1.6) yield a
nonlinear algebraic system of 5J+5 equations in .s many unknowns
(fg, ug. vg, gg, tg). The system can be solved very effectively by qsing

Newton's method. We introduce iterates [fgi), §1), vﬁ‘), g§1), tg]),
i=0,1,2,..., with initial values for the specified wall temperature 9, Sy



AT TR o | O

BLCERR R i B

LR Tl B

O TS TP Ay

D, Jre

0 B o “ Yo * % W o o °
(0) . ¢n-1 (0) . n-l (0) . n- (0) _ n-l
ARSI ML RS BRI R
(0) _ n-1 i e
6 =t 1 s

£(0) < f?_]. u§°’ =0, VSO) B VJ-} (0) =0, {0 = 1 g2

For the higher order iteratus we set
(141) _ (1), (e01) (i+1) |
fj fj 6fj N “j

Gol) | (4) L () L (#1) L) L ()
95 T gy T regy s by T =yt aty

Then we insert these expressions in place of [f s u1. Vis Yso tJ] in (4.1.4)

| S—

and drop the terms that are quadratic in [uf§1), ;‘), évgi), vggi), stgi)
This procedure yields the following linear system:
Ei
- 9 - = i
Sfj ofj_] 3 (<Su:j + Guj_]) (r])J._;d (4.2.2a)
h.
6 §v. + 6 = . 4.2.2b
- L Vit evsg) o= () ( )
ij_
89 = ¢9: 1 - 3 (<stJ + 6tJ 1.) = (r3)Jn, (4.2.2¢)
(‘:]) v, + ("2) -1 + (C3)J sf. + (Q4) f -] ([’D)J Q“J

*leghy suyy = (g, (4.2.2d)




for j =1,2,...,J-1. Here for convenience we have dropped the superscripts

i and n. The coefficicnts (Qx)i (k =1 to 6) of the differenceqd mokentun

enuation are:

o fi o]
()= b5+ [“’1*%”3 o fio

h,
(CZ)J =.p. .t ?‘J- [(P] + x )f. 1 - ¢ fq-]]

J-1 n’y- nj-%

] [ n%l]

((’3).) ? (P] + Gn)VJ t Q,nVJ._L2
(4.2.3)
h.

_ n-1
( 4)3 ) fl' [(Pl * qn)VJ-l * anvg—g]
(CS)J = ‘hJ(P2 + Qn)uj
(C6)J = -hJ(P2 + cxn)uj_]

The coefficients (8 ). (k =1 to 8) of the differenced energy equation
are

Ll




h,
n-1
(88)3 T ?l' *n (gj-l B gj-é) (4.2.4)
The coefficients (rk)j (k=1 to€&) urec:

)y = gty = F5 7 fa

H

. V.. - Ut U
(rZ)J hyViae ~ Y5 % ¥

.= L., - .+ .
(r3)J thJ‘% gJ gJ'] (4.2.5)
- n-1 | . . _

). o= .Tn".]-[..- . o+ h. e, o+ o) (ft).
(rgdy = T3l = 8yty = Cyatyar v hy (P epd(ftly
n-1 n-1 n-\ n-1 l]
- - . . . L. - N
R A N Y

The boundary conditions for the specified wall temperature become

¢f. =0, ¢ =0, su_=0, guy = 0, 59, = 0 (4.2.6)

The boundary conditions for the specified heat flux become
ity =0, 6t =0, su, = 0, du, = 0, ~qy =0 (4.2.7)
We use the block elimination method discussed by Isaacson and Ke]]er(]g)
to solve the linear system (4.2.2), arnd (4,2.€) or (4.2.7) depending or the bouidary

conditions. For completeness we present the block elimination method for our
problem in Appendix A,
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V. SOLUTION OF THE GOVERNING EQUATIONS FOR THE INVERSE PROBLEM

5.1 Variational Fquations

In order to calculate 3¢/3P, in (3.1.10) or in (3.1.18) it is necessary

to know F& for the specified

specified ¢* case.
n

respect to P2

Cs

case or F(n )[ Sf/apz(nm)] for the

as the variational equations for (4.1.4):

?|3](F

n.f

n -
5 Fia) = Y,
-14,n n _ N
h.]' (U\] == Uj"]) = Vj"lﬁ
-1/~n N n
h., (G, — G, = T.
J ( J 3-1) T
1 4.n,n n n 1 ,.n n,n NEa , N N n gn
hy (o35 - bY Vi) + 5 (R ) {fjv FovsFe VS T vyafy
1 n 2\n n n,.n n
t s (fv)j-E = (u )j“L - (PZ + u“) (“juj + ”j-‘UJ-1)
‘n n-1 ;.n n n-1,,n n n
e DS G L (VRN ] RN
~1/ nn n +n 1 (N ‘[ NN nen n o .n non ]
) T, -, LT, + 5 (P) + q O+ tF) o+ f) LT, - F.
s (eJ i % J-l) 2 ( 1 n) f3'5 t5hy fi-1 31 J-1 -1
1 n %n n~.n nn n n n .n n-1,.n
e (P05, =3 0] g uf 6Ty oy e (]
_ n=1 4n no n-1 /0 n _,n=1 /o n J -
9., (Uj + Uj-]) Y (Tj * TJ-]) iy ( i Fj_]) 0
Equations (5.1.1a to ¢) can be written as
n n hj n n
Fi=Fiq— 7 (Uj + uj_]) 0
h.
n_.n _ j ¢yn n _
Uj = Uy = (V5 + Vi) = 0
6" - 67, ~ ] T ) =0
378 Tz Tt Ty
18

For this rcason we take the derivative of (4.1.4) with
This leads to the followirg linear difference equations, known

(5.].]0)

(5.1.1b)

(5.1.1c)

(5.1

.2n)

.2¢)

%
3
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Equations (5.1.1d, e) can be rearranged in a form similar to (4.2.2d, e}, that

is:
n R FN o+ N A T LA P W VLA .
141)JVJ + (CZ)JVj_? (§3)JFJ (CQ)J J_] \CS)JUJ (uﬁ)JlJ_] (r4)3-¥
(5.1.2d)
" s (g) O+ (5g) 6" i
(u])JTJ + (BZ)TJ_] + (83)JFJ + (84)JFJ‘1 + (BS)JGJ (36)JGJ_] + (87)JUJ
+ (Bs’jU?_1 =0 (5.1.2¢)
Here
L':g.f__ U:SU V:_d_v_
aP2 3P3 aPZ

and the coefficients Ly and B, are the same as those given by (4.2.3)
and {4.2.4). The coefficient (r4)j-a is defined by

(rg). .. = ‘C?-g —-% (F)" o+ (W) (5.1.3)

J=% 3=

it

Similarly the boundary conditions (4.1.6) become

(5.1.4)

As puinted out in Ref. 12, an alternative set of variational equations
can be obtained by first taking the derivative of (4.1.1) and then differencing
the resulting equations. However, this procedure does not necessarily yield
a good approximation to the desired derivative, V = .'-v/.\P2 or F = af/aPz.
In the limit, as hj and kn + 0, both procedures yicld the same result,
But as is reported in Ref. 12, for the actual numerical calculations, the
present procedure gives precisely the derivatives required for New*ton's method
while the other procedure may not. This is, in fact, cne of the basic differ-
ences between what is5 sometimes called 'quasi-linearization” and our exact
application of Hewton's method. Thus the “quesi-linearized" iterations may not
converge quadratizally (as was found to be the case in references 12 and 17,
but our present iterates do show sunerlinear cohvergence.

The system (5.1.2), (5.1.8) again forms a block tridiagonal system (with
5 x 5 blocks) that is easily solved by the block elimination method described
in Apperiix A.




VI. RESULTS FOR STANDARD AND INVERSE PROBLEMS

6.1 Grid Across the Boundary Layer

While the numerical scheme employed here is a general one in that any
type of grid can be used in the n-direction (also in the x-direction), we

i have chusen a grid previously used by the author and his associatee(]42 This

grid has the property that the ratio of lengths of any two adjacent intervals
is a constant, that is,

e

P R L T

. = Kh, .1
i The distance to the j-th n-lipe is given vy the following formula:
2
: KW~ . , .
; njzh]--r_—\r J=], 2, 3, ...,\] 1> (6.].()
¢
% There are two parameters: h], the length of the first &4n-step, and K, the
: ratio of two successive steps. The total number of points J are calculated

by the foilowing formula:

: In[1 + (K= 1)”m/h1]
H3 -
3 J = TR (6.1.3)
é:
] In our calculations we select the parameters hy and K and calculate
E the n_e Several runs with a different number of points across the boundary

layer showed that (see ref. 14 ) approximately 30 to 40 points are sufficient
: for turbulent flows. A typical value of h] is 0.01, provided that the

' Reynolds number is not very large, say less than 107. At higher Reynolds
numbers, it is better to use a smaller value of h], say h1 = 0.005. Figure
2 shows the values of K for various values of (”m/h]) X 10"2 and J.

E From this figure we choose the value of K as follows:

Let us assume that we want to take a maximum of 40 points across the

boundary layer., If the Reynolds number is not very large, an estimate for the

maximum value of n_ = 50 1is sufficient. Then taking h] = 0.01, the ratio
of (n_/hy) x 1077 i 50. Thus from figure 2, J = 40, K
1.19

is approximately




1.24

——— a4
ek

Lo L
5 10 20 50 100 279

ne/h, x1072

Figure 2, Variable-grid parameter for given step size and boundary-layer
thickness,

6.2 Results for the Standard Problem

To test the method for the standard problem we made calculalions for the
experimental data of Lewis, et a1(]9), which consists of compressible adiabar<c
turbulent boundary layers in adverse and favorable pressure gradients. The
results are shown in Fig. 3. The calculations were started by matching a zero-
pressure-gradient profile (Rd = 4870) at x = 11.5 in, downstream of the leading
edge of the model. Then the experimental Mach-number distribution shown in fiqure
3a was used to compute the rest of the flow. In general the calculated velocity
profiles, local skin-friction and momentum-thickness-Reynolds-number values are in
good agreement with experiment. We should point out here that the experimental

skin-friction values were obtained by Stanton tube and were not deduced from the
experimental velocity profiles
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Comparison of calculated and experimental results for the experimental
data of Lewis et al. (a) Velocity profiles and oxternal Mach number

distribution. (b) Local skin-friction coefficient c¢ and Reynolds
number Ry distribution.



6.3 Results for the Inverse Problem

To test our method for the inverse problem for the case of specified Ceo
we made calculations for incompressible turbulent boundary layers, and checked
the results obtained earlier in another study. We have chosen two experimental
incompressible flows from the data reported in the Stanford Conference on
Computation of Turbulent Boundary Layers(zo). The flows we have considered

are known as 1300, 5200 and 5300 in that conference.

The flow 1300 corresponds to an accelerating flow. The experimental data
is due to Ludwieg and Tillmann. Flows 5200 and 5300 correspond to decelerating
flows measured by Stratford. They differ from those more common decelerating
turbulent flows in that they have a negligible skin friction. Thus, they are
on the verge of separating. For this reason it is a very severe test for a
numerical method and for exploring the accuracy of the eddy-viscosity formulas.
In the 1968 Stanford Conference, of the investigators who used differential
methods, only one computed 5200 and none has computed 5300. The accuracy of
computing these flows is also important in many design problems as was discussed
in the Introduction, The design of the Liebeck airfoils discussed in refs, &
and 6, for example, is based on the results of boundary layer calculations for
a flow with vanishing skin friction.

I'n making these computations we have first considered the standard problem,
That is, for the given experimental velocity distribution and for the given
initial velocity profiles at x = x,, we have computed the velocity profiles and
the local skin-friction coefficient at each specified x-location. Then we made
the calculations for the inverse problem. We specified the computed local skin-
friction coefficient as an additional boundary condition at each x-station and
computed the velocity distribution by the inverse method. We have thus used the
computed skin-friction values, rather than the experimental values, as a boundary
condition., Such a procedure is necessary because a slight error in the experi-
mental skin-friction coefficient will severely affect the computed velocity
distribution, To discuss this point further, let us consider the data of
Stratford, either 5200 or 5300, It may be seen from the skin-friction ('ots
in figures Jb and 6b that the experimental values of Ce show scatter: in an
adverse pressure gradient flow, cg¢ should either stay nearly constant or

decrease. If one uses the scattered values as boundary condition and conputes
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the velocity distribution, one would get slight increases and decreases in
the velocity distribution with increasing ard decreasing c., respectively.

The computed results in fig. 4 for the accelerating flow 1300 show very
good agreement with experimental data. This indicates that our eddy viscosity
formulation is quite satisfactory for this flow. On the other hand, the
computed results in figures 5 and 6 for the two decelerating, on-the-verge-
of-separating flows, 5200 and 5300, are not satisfactory at all although the
computed resuits at the beginning of these two flows agree well with experi-
ment (see the velocity profiles at x = 2,9075 for both 5200 and 5300). This
is probably due to the effect of the strong pressure gradient suddenly imposed
at x > 3.0 ft. However, the present method does not break down as almost
all other numerical methods do and performs extremely well even under such
strong pressure gradients at 5200 and 5300 contain,
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Appendix A
BLOCK ELIMINATION METHOD

fhe 1inear system (4.2.2), (4.2.6) or (4.2.7) depending on the boundary
conditions can be so]ved in an extremely efficient manner as described by
Isaacson and Kel]er('g) since it has a blnck tridiagonal structure. This is

_not obvious and to clarify the solution procadure we write our system in

matrix-vector form. There are many ways in which this can be done, They are
all equivalent and merely amount to different permutations of the equations or

of the unknowns or both. Further, the boundary conditions (4.2.6) or (4.2.7)

~could be employed to eliminate the five unknowns and thus slightly reduce the

order of the system. When the latter is done, the system (4.2.2), and (4.2.6)

for the case of specified wail temperature can be written as

1 =7 (A.1)
ng rj
where SJ and r, are vectors denoted by
SV, Buj_1 (r])j
5t 6951 (rp);
v 3 - v.o= 11 << (A2)
5V, 8V (ra)J
, (rs5).
|_6t~|_ Pét\] _ L J
Here the coefficient matrix A is
r ~—
A G
B, A O
) . . (A'3)
AR BN AR
AT
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and Aj, C., B. are 5 x5 matrices given by (aj z hj/Z)

iy
Co0 o 1 0 0 | [, 0 1 0 o0 ]
- -a;, 0
-3, 0 0 -3, 0 1 0 0 3
A=l 0 -3, 0 0 -3 hA=| 0O 10 0 -3y
(z2) 0 (g3)y (1)) O (zg) (re); (23); (29);
0 (82), (83)y O  (B1)y L(Ba)j (86); (e3); 0 (&1);]
2<j =< (A.4)
(0 0 -1 0o 0o ] [-a; 0 0 0 0]
0 0 0 -a; 0 1 0 0 0 0
By =10 0 0 0 -a 2jedy Cy=1p 0 1 0 0 0 12j<d-1
0 0 (44)j(c2)j 0 (Cs)j(C7)jO 0 0
0 0 (Bg). 0 (82); (87).(85).0 0 O
L ) J) I .

The system (A.1) can be solved by the block tridiagonal factorization
procedure described by Isaacson and Keller, According to this procedure, we
first seek a factorization of the form

A = 21U (A.5)
where (with Ij denoting the identity matrices)
a
! | LN
B a
2 2 1 r
2 2 (A.6)
X = . ‘ U = .
8 a I
L JoY] o ol
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From (A.3) and (A.5) it follows that

o = A, ATy = G (A.7a)
= A, —B.T. =2, 3, euy d (A.7b)
= = 2, 3; eo 0y \J"] A.7C

cxjrj CJ J
Substituting (A.5) into (A.1) we get
o=y, A.8
éCU_KJ Fi (A.8)
If we let
Wy = w; (R.9)
Then (A.8) becomes
LwW; =1y (A.10)
If we denote T, by
[ . . 0 0 0_
(Y]])J (Y]z)J
. . 0 0 0
(v21)5  (v22)
ri= |ty )y 0000 P=h2 3 e dgg
] . . 0 0 0
(var);  (va2);
(vs1); (vs2); O 0 0
— =
Then from (A.7a) we find that for j =1
(21)
] Vi (ge), + a,(23)
= — 5 d 3
2 ) B €9 M % P R 1 Y a3
. 1 + ]
21 7 Te2)y - (BT, [(e7y + mats3),
Y31 T Y
. (A.12)
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where

(A.12)
¥32 = 0
Ya2 T M2
V52 T Tay T Vez
From (A.7b), we can show that for j > 2, the elements are ay are:
[ T
(a]])j (alz)j 1 0 0
(0‘2])J' (“22)j 0 -aj 0
a; = (03]). ((132). 0 0 -a,
J J J e OJ (A.13)
(a4l)j (aaz)j (z3); (5 j
(“51)j (agp); (83); O (B])j_J
(a]])J = -aj + (Y3])J_]
(02})3. = -1 + aJ(Y4])J']
(a3])j = aJ(YSIIJ‘] %
%
= — - (. 3
(ag))5 = (8g)5 = (8g)50vgy )50 = (8)50vey) 5, !
i
(GZZ)J = aJ(Yaz)J‘] |
36
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Y51 T Y21
(c5),
712 = (52)] - (C])-‘

] 1 (8, \
2 T Ty = ETy | ¢ (8sh




(a3);

j = -1+ a, (152)

J-1
(u42)j = (Cg)j "(C4)j(732)j-] "(Cg)j(742)J-] e

(052),] = (BG)J - (84)J(Y32)J'] - (EZ)J(YSZ)J-]

The unknowns vy, in (A1) for i=1,2,3,4,5 and k=1, 2 are next , o

determined from (A.7c). For k =1, vy are: :

() (c]) (b, ) (t.’l)i(c-?),i

1175 a. :

J R

(vo) (a ) (c — (cy)
2173 R

J AJ

i32)y

(Y3] )J "aj - (Q‘”)j(Y]])J - (G]Z)J(YZ] )J

(a) = (agy)y = (Eg) (o) 5 + (5 lugy) 52

J

- A.15
(b])- = (042) (;]).(uzz)jaj ( a)

() = (gg)y + (eg)ja5 + (5))a])

(a,)5 = (agy)y = (8y)5(aq))5 + (B (az)) 53]

J J

o)y + (87)5lagp) o3

;= (QSZ)J - (83)J

(cp)5 = (87)5 + (85) 52,

A, = (a])J(bz)J - (b] )J(az)

J




‘\“M‘ "\;-‘ | i

For k =2, Yig are:

(). = '(bl)j(cz)j
N2’j 55

(a,) . (c2),
(v22); “‘L‘,]:‘“’l
J

(A.15b)
(Y32)J = '(U]])J(le)J - (alz)J(Yzz)J

_ 3
=2

32

_x

g
,;E
]
;f

E{_
=
=

=

3

(Y42)j = [(GZI)J(YIZ) (“22 J(Yzz) ] a

-1
(Y52)J = [(03])j(Y]2)j + (032)j(Y22)J' - ]] aj

where (a])j, (b])j, (az)j, (bz)j and by are the same as 1n (A.15a); (c,),
is different and is given by

Lol 2

(c)); = (8g); + (8)) a3

To determine Wj we use (A.10) and the definition of L in (7.6). If we
denote Wj by

— -1
(w])j 7
(”2 '
Wy = (w3)j (A.16)
(w4)j
(we) .
5]
then i1t can be shown that
a]w] = (A.16a)
W, =TI, — B.W. ; A.16b
agWy =Ty BJwJ_] 2 <j=<Jd ( )

Thus for Jj =1, using the definitions of o, W] and F] from (A.16a) we
can write

38




Thus for j = 1, using the definitions of oy W] and ?1

can write
)y = Tl (e jalt + (),
(Wp); = [lry)j(8,) a7 + (rg),
(wy)y = (r);
(wg)j = =Wy = (rz)la;]

] -1
(W) = -wp = (r3hya

(e3 ;

) 1 [(s,! 'y

- (c3)J(r])j] [(Qz)‘] -

from (A.16a) we

(4 j3']

-1
(8)),]

(A.17)

For 2 <j <J, weuse (A.16b). If we denote its right-hand side by n with

then

(n])jT
(ny);
n = (n3).
(n,)
(ng).
L > J.J
(w])j = < J » J ¢
J
(a] (Cz) - (C])(az)
(w2)j = J J — J J
J
(wg) 5 = Llagy)jm)5 + (agy)s(p); = (ny). a3
(WS)J = [(33])J(W])J + (032)3(‘”2)3 (n3) ]a

J
and (cz). are:

-1

(R.18)

are given by the definitions in (A,15a)



RIaE T,

(n,)j = (r])J + (w3)j_,
(nz)j = (rz)j + aj(w4)j_]

i gy

Rivrm

—_
3
(V8]
~—
1]

+ aj(ws)j-l
(n4)j = (rq) [(C4)J( 3)3 1 + (Cz) (w4)j-I]
(ng)j = (rg)j = [(8g) )5y + (8 )-(ws)j-]]

j(n])' (C])

—
(g}
—
~—
it

J = (n4)J - (C3) J( 2) a,
= gy = (3)5(m)5 + (8y)(n3) a7

{c,) 3

J

Finally the perturbation quantities denoted Ly 3 are calculated from (A.6)
and (A.9). It follows that

-

8y = W, (A.20a)

-»

Zj =W - rj§j+] 2 <j <91 (A.20b)

Thus at j = J,

Suyy = (W),
89941 = (W),
6f5 = (W3l
svy = (wg)y
Sty = (w5,

For 2 <j <J-1,
6ugy = )y = (ryq) o,
89 (”2)j ({2])Jdu
6ty = (g =~ lygp) v,
8y = (Wq)j (vgy);8u
8ty = (w5)J (Y5,)J 5




For j =1

o
<
o
!

= (W])] - ,Y‘])'|<Su] - (712)16(1]
&Zo = (WZ)] - (Yz])]GU] - (Tzz)](\g]

p = (hg)y = (ygy)q6uy = (vgp)q 89y (A.23)

O
<
-
!

= (wg)y = Crgyyeuy = (rg2)y89)

"

sty = (Wg)y = (vg)ysuy = (vg5p) 89

Equations starting from (A.2) to (A.23) are for the case of specified wall
temperature. When the wall heat flux is specified some of those equations in
(A.2) to (A.23) change. For example 30 and A] in (A.2) and (A.4) become

dvé] 0 0 1 0 0
89, -a, 0 0 0 0
3; = | 8f, . Ay = 0 -1 0 s 9 (A.24)
6V, (r)y  (gg)y  (g3)y  (ny)y 0
I tL i 0 (8g); (Bg)y O (t'—])U

These new definitions lead to the new equaticns for ik for j =1, and for

(wi)] with i=1,2,...,5 and k=1, 2. The equations for y; are:

<Y3])] = 'a]

]
(¥oy)y = —~ [(By)y — (8B3)7(¥27)4]

2171 (5.)1 — (8).a 1 71 311731
6’1 117

! ( (c1)1
(Y”)] = (,;2)] "(C]T] (CS)] - (C3)]\Y3])] + —a"]""_' (LB)](\'Z])]
gy = =Gy = )

v -1

(g )y = by )y
(v35); = 0 (A.25)
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3
'
£
8
b

(vp)) = S Lleg); + (800"
(8ehy = (1)

(Ysz)] = '[] + (Yzz)l):la;]

_ ]

(2)y = -(vgp)y
The equations for (wi)] are:
(vgly = )y

1

(), = e Llrg)y = (55),(ug); + (), ()0

]
(8g)y = (8y)y2y

_ ] -1
(W])] = (Cg] — (C]—)_]— [(Y'Q)] - (C3)](W3)] + (C-l)](rz)]a] - (Eg)](wz)])
= -1 (A.26)
(wghy = -lwy)y = ey
= -1
(ws)] = ‘[(W2)] + (l"3)]]a]
The rest are the same except for the second equatisn in (A,?3). That equation

1s replaced by

f9, = (wady = (vpy)q6ug = (v,,) 60, (A.27)
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